
Hashing In The Real World

Kyle and Freddie



Table of contents

1 Gentle Intro to Hashing

2 Why’s Hashing Useful?
HashMap in C++

3 Uses of Hashing in Competitive Programming

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 1 / 21



Let’s Brainstorm
Consider the average case time complexities of array operations

Search: O(n)
Insert / Delete: O(n) (shifting other elements to open / close gaps respectively)

Can we do better - insert and delete in constant time (on average)?
Bob the Builder, Yes We Can!

Idea: If we give each element a ’fixed’ position in an array, then when we insert that
element, we don’t need to move other elements around =⇒ O(1) insertion.

Similarly for deletion.

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 2 / 21



Let’s Brainstorm
Consider the average case time complexities of array operations

Search: O(n)
Insert / Delete: O(n) (shifting other elements to open / close gaps respectively)

Can we do better - insert and delete in constant time (on average)?
Bob the Builder, Yes We Can!

Idea: If we give each element a ’fixed’ position in an array, then when we insert that
element, we don’t need to move other elements around =⇒ O(1) insertion.

Similarly for deletion.

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 2 / 21



Let’s Brainstorm
Consider the average case time complexities of array operations

Search: O(n)
Insert / Delete: O(n) (shifting other elements to open / close gaps respectively)

Can we do better - insert and delete in constant time (on average)?

Bob the Builder, Yes We Can!
Idea: If we give each element a ’fixed’ position in an array, then when we insert that
element, we don’t need to move other elements around =⇒ O(1) insertion.

Similarly for deletion.

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 2 / 21



Let’s Brainstorm
Consider the average case time complexities of array operations

Search: O(n)
Insert / Delete: O(n) (shifting other elements to open / close gaps respectively)

Can we do better - insert and delete in constant time (on average)?
Bob the Builder, Yes We Can!

Idea: If we give each element a ’fixed’ position in an array, then when we insert that
element, we don’t need to move other elements around =⇒ O(1) insertion.

Similarly for deletion.

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 2 / 21



Let’s Brainstorm
Consider the average case time complexities of array operations

Search: O(n)
Insert / Delete: O(n) (shifting other elements to open / close gaps respectively)

Can we do better - insert and delete in constant time (on average)?
Bob the Builder, Yes We Can!

Idea: If we give each element a ’fixed’ position in an array, then when we insert that
element, we don’t need to move other elements around =⇒ O(1) insertion.

Similarly for deletion.

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 2 / 21



Enter - The Hash Function
A hashing function give us this ’fixed’ position within an array.

int hash(int N /* (size of our array we're hashing into) */, int elem) {

int hash = elem * elem;

return hash % N;

}

Let’s insert into an array of size 8 using this hash function. Now we can call this
’array’ a hash table. Consider 10, 12, 13:

Now it’s your turn - give us some integers to insert!

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 3 / 21



Enter - The Hash Function
A hashing function give us this ’fixed’ position within an array.

int hash(int N /* (size of our array we're hashing into) */, int elem) {

int hash = elem * elem;

return hash % N;

}

Let’s insert into an array of size 8 using this hash function. Now we can call this
’array’ a hash table. Consider 10, 12, 13:

Now it’s your turn - give us some integers to insert!

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 3 / 21



Enter - The Hash Function
A hashing function give us this ’fixed’ position within an array.

int hash(int N /* (size of our array we're hashing into) */, int elem) {

int hash = elem * elem;

return hash % N;

}

Let’s insert into an array of size 8 using this hash function. Now we can call this
’array’ a hash table. Consider 10, 12, 13:

Now it’s your turn - give us some integers to insert!
Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 3 / 21



Nothing’s Perfect...
As we saw from your examples, we run into issues when distinct elements have the
same hash! Let’s resolve these ‘hash collisions’:

A natural idea is to chain these elements with identical hashes in a linked list:

We can chain these together very much like a simple linked list!

Can we do better?
If all elements hash to a single slot (in the worst case), we’ll have a O(n) search, insert
and delete ... so what was the point?!

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 4 / 21



Nothing’s Perfect...
As we saw from your examples, we run into issues when distinct elements have the
same hash! Let’s resolve these ‘hash collisions’:

A natural idea is to chain these elements with identical hashes in a linked list:

We can chain these together very much like a simple linked list!

Can we do better?
If all elements hash to a single slot (in the worst case), we’ll have a O(n) search, insert
and delete ... so what was the point?!

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 4 / 21



Nothing’s Perfect...
As we saw from your examples, we run into issues when distinct elements have the
same hash! Let’s resolve these ‘hash collisions’:

A natural idea is to chain these elements with identical hashes in a linked list:

We can chain these together very much like a simple linked list!

Can we do better?
If all elements hash to a single slot (in the worst case), we’ll have a O(n) search, insert
and delete ... so what was the point?!

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 4 / 21



A (not so) Subtle Improvement
A natural improvement on a linked list is a self-balancing tree (such as an AVL tree),
which will guarantee us O(log n) search, insert and delete in the worst case.

Going back our earlier example, even in the worst case, we’d have a hashtable that
looks visually like:

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 5 / 21



A (not so) Subtle Improvement
A natural improvement on a linked list is a self-balancing tree (such as an AVL tree),
which will guarantee us O(log n) search, insert and delete in the worst case.

Going back our earlier example, even in the worst case, we’d have a hashtable that
looks visually like:

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 5 / 21



Implementation of HashMap in C++
The implementation of HashMap utilises separate chaining to deal with collisions.
It dynamically resizes the underlying array when the total number of elements
inserted is greater than the size of the array.
This yields an amortized (averaged-out) complexity of O(1) for all operations on a
HashMap in C++.

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 6 / 21



Implementation of HashMap in C++
Let’s declare a HashMap which maps a string key to an integer value.

unordered_map<string, int> m;

We can now assign an integer value to our string key.

unordered_map<string, int> m;

m["bob"] = 5;

As you may have guessed, this is a powerful tool that let’s us access a value not
necessarily based on its index as in array

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 7 / 21



Implementation of HashMap in C++
Let’s declare a HashMap which maps a string key to an integer value.

unordered_map<string, int> m;

We can now assign an integer value to our string key.

unordered_map<string, int> m;

m["bob"] = 5;

As you may have guessed, this is a powerful tool that let’s us access a value not
necessarily based on its index as in array

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 7 / 21



Implementation of HashMap in C++
Let’s declare a HashMap which maps a string key to an integer value.

unordered_map<string, int> m;

We can now assign an integer value to our string key.

unordered_map<string, int> m;

m["bob"] = 5;

As you may have guessed, this is a powerful tool that let’s us access a value not
necessarily based on its index as in array

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 7 / 21



Simple Example

You are given an integer N , then N names of everyone in the class and their corres-
ponding age. You will then be given an integer Q, and then Q names. You are then
tasked with printing the total sum of the age of everyone in the given subset.

Sample Input:
3
Bob 12
Kelly 19
George 20
2
Kelly George

Sample Output: 39

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 8 / 21



Simple Example
unordered_map<string, int> ageMap;

int n; cin >> n;

for (int i = 0; i < n; i++) {

string s; cin >> s;

int age; cin >> age;

ageMap[s] = age;

}

int q; cin >> q;

int sum = 0;

for (int i = 0; i < q; i++) {

int name; cin >> name;

sum += ageMap[name];

}

cout << sum;

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 9 / 21



Other Uses of Hashing
Hashing can be used to verify that our data has not been corrupted.

This stems from the fact that when even one single character has been changed, the
resulting hashes are entirely different.

Hashing is used to store our passwords.
Most websites store the hashed version of our passwords, so when users attempt to log
in, the system applies the same hash to the provided password and simply checks if the
result of the two hashes is the same.
This reduces the effect of data breaches.

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 10 / 21



Other Uses of Hashing
Hashing can be used to verify that our data has not been corrupted.

This stems from the fact that when even one single character has been changed, the
resulting hashes are entirely different.

Hashing is used to store our passwords.
Most websites store the hashed version of our passwords, so when users attempt to log
in, the system applies the same hash to the provided password and simply checks if the
result of the two hashes is the same.

This reduces the effect of data breaches.

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 10 / 21



Other Uses of Hashing
Hashing can be used to verify that our data has not been corrupted.

This stems from the fact that when even one single character has been changed, the
resulting hashes are entirely different.

Hashing is used to store our passwords.
Most websites store the hashed version of our passwords, so when users attempt to log
in, the system applies the same hash to the provided password and simply checks if the
result of the two hashes is the same.
This reduces the effect of data breaches.

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 10 / 21



A Classic Application
The Classic Two-Sum: Given an array of n integers, return two elements that sum to
a given target t.

1 Naive solution of comparing all
(
n
2

)
pairs =⇒ O(n2) comparisons.

2 Merge sorting, and then two-pointer approach =⇒ O(n log n).
Alternatively, insert all integers into AVL tree and for each element x, search for its
complement t− x (still O(n log n)).

3 Insert all integers x into a HashMap in O(1) · n, then for each element, search for its
complement t− x also in O(1) · n =⇒ O(n)!

Hence, design an O(n2) algorithm to determine if any three unique elements in an
n-sized array sum to a given target t.

Idea: Consider all pairs a, b and search in hashtable for their complement x− a− b.
But, is that diligent enough?

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 11 / 21



A Classic Application
The Classic Two-Sum: Given an array of n integers, return two elements that sum to
a given target t.

1 Naive solution of comparing all
(
n
2

)
pairs =⇒ O(n2) comparisons.

2 Merge sorting, and then two-pointer approach =⇒ O(n log n).
Alternatively, insert all integers into AVL tree and for each element x, search for its
complement t− x (still O(n log n)).

3 Insert all integers x into a HashMap in O(1) · n, then for each element, search for its
complement t− x also in O(1) · n =⇒ O(n)!

Hence, design an O(n2) algorithm to determine if any three unique elements in an
n-sized array sum to a given target t.

Idea: Consider all pairs a, b and search in hashtable for their complement x− a− b.
But, is that diligent enough?

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 11 / 21



A Classic Application
The Classic Two-Sum: Given an array of n integers, return two elements that sum to
a given target t.

1 Naive solution of comparing all
(
n
2

)
pairs =⇒ O(n2) comparisons.

2 Merge sorting, and then two-pointer approach =⇒ O(n log n).
Alternatively, insert all integers into AVL tree and for each element x, search for its
complement t− x (still O(n log n)).

3 Insert all integers x into a HashMap in O(1) · n, then for each element, search for its
complement t− x also in O(1) · n =⇒ O(n)!

Hence, design an O(n2) algorithm to determine if any three unique elements in an
n-sized array sum to a given target t.

Idea: Consider all pairs a, b and search in hashtable for their complement x− a− b.
But, is that diligent enough?

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 11 / 21



A Classic Application
The Classic Two-Sum: Given an array of n integers, return two elements that sum to
a given target t.

1 Naive solution of comparing all
(
n
2

)
pairs =⇒ O(n2) comparisons.

2 Merge sorting, and then two-pointer approach =⇒ O(n log n).
Alternatively, insert all integers into AVL tree and for each element x, search for its
complement t− x (still O(n log n)).

3 Insert all integers x into a HashMap in O(1) · n, then for each element, search for its
complement t− x also in O(1) · n =⇒ O(n)!

Hence, design an O(n2) algorithm to determine if any three unique elements in an
n-sized array sum to a given target t.

Idea: Consider all pairs a, b and search in hashtable for their complement x− a− b.
But, is that diligent enough?

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 11 / 21



A Classic Application
The Classic Two-Sum: Given an array of n integers, return two elements that sum to
a given target t.

1 Naive solution of comparing all
(
n
2

)
pairs =⇒ O(n2) comparisons.

2 Merge sorting, and then two-pointer approach =⇒ O(n log n).
Alternatively, insert all integers into AVL tree and for each element x, search for its
complement t− x (still O(n log n)).

3 Insert all integers x into a HashMap in O(1) · n, then for each element, search for its
complement t− x also in O(1) · n =⇒ O(n)!

Hence, design an O(n2) algorithm to determine if any three unique elements in an
n-sized array sum to a given target t.

Idea: Consider all pairs a, b and search in hashtable for their complement x− a− b.

But, is that diligent enough?

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 11 / 21



A Classic Application
The Classic Two-Sum: Given an array of n integers, return two elements that sum to
a given target t.

1 Naive solution of comparing all
(
n
2

)
pairs =⇒ O(n2) comparisons.

2 Merge sorting, and then two-pointer approach =⇒ O(n log n).
Alternatively, insert all integers into AVL tree and for each element x, search for its
complement t− x (still O(n log n)).

3 Insert all integers x into a HashMap in O(1) · n, then for each element, search for its
complement t− x also in O(1) · n =⇒ O(n)!

Hence, design an O(n2) algorithm to determine if any three unique elements in an
n-sized array sum to a given target t.

Idea: Consider all pairs a, b and search in hashtable for their complement x− a− b.
But, is that diligent enough?

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 11 / 21



A Classic Application
The Classic Two-Sum: Given an array of n integers, return two elements that sum to
a given target t.

1 Naive solution of comparing all
(
n
2

)
pairs =⇒ O(n2) comparisons.

2 Merge sorting, and then two-pointer approach =⇒ O(n log n).
Alternatively, insert all integers into AVL tree and for each element x, search for its
complement t− x (still O(n log n)).

3 Insert all integers x into a HashMap in O(1) · n, then for each element, search for its
complement t− x also in O(1) · n =⇒ O(n)!

Hence, design an O(n2) algorithm to determine if any three unique elements in an
n-sized array sum to a given target t.

Idea: Consider all pairs a, b and search in hashtable for their complement x− a− b.
But, is that diligent enough?

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 11 / 21



Three Sum Review
Let’s test our idea on the following array searching for 15.

Our first pair is 3and6, so we’ll search in the hashtable for the presence of 15− 3− 6 = 6.

If we aren’t careful, we may find the 6 (from index 0 in the original array) in our hash table
and return a false positive!

A clean way to deal with this is to store the original indices of terms (in the array) within
our hashtable so we can check for these duplicates.

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 12 / 21



Three Sum Review
Let’s test our idea on the following array searching for 15.

Our first pair is 3and6, so we’ll search in the hashtable for the presence of 15− 3− 6 = 6.

If we aren’t careful, we may find the 6 (from index 0 in the original array) in our hash table
and return a false positive!

A clean way to deal with this is to store the original indices of terms (in the array) within
our hashtable so we can check for these duplicates.

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 12 / 21



Three Sum Review
A hypothetical hashtable may look like:

Whenever we find a complement c of a pair (a, b), we ensure
array_index(c) ̸= array_index(a) and array_index(c) ̸= array_index(b), so that
we’re choosing 3 distinct terms.

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 13 / 21



4-4-4-4 Sum
Your next challenge: What about for a group of 4 integers - can you do this in O(n2)?

We can reduce this problem to asking: ‘are there any mutually disjoint’ pairs that sum
up to the target t.

Mutually disjoint meaning the two pairs don’t share any common elements.

We insert the sum of all n(n−1)
2 pairs into a hash table along with the indices of each

element in the pair. Now for each pair (a, b), we search for its complement x− a− b in
our hashtable.

If found, we ensure that all four elements across the two pairs are unique by comparing
their array_indices.

Clearly O(n2) in the average case since there are O(n2) pairs and insertion and
searching both take constant time.
Even in worst case, we will have O(n2 log n) using our AVL tree collision resolution
mechanism.

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 14 / 21



4-4-4-4 Sum
Your next challenge: What about for a group of 4 integers - can you do this in O(n2)?

We can reduce this problem to asking: ‘are there any mutually disjoint’ pairs that sum
up to the target t.

Mutually disjoint meaning the two pairs don’t share any common elements.

We insert the sum of all n(n−1)
2 pairs into a hash table along with the indices of each

element in the pair. Now for each pair (a, b), we search for its complement x− a− b in
our hashtable.

If found, we ensure that all four elements across the two pairs are unique by comparing
their array_indices.

Clearly O(n2) in the average case since there are O(n2) pairs and insertion and
searching both take constant time.
Even in worst case, we will have O(n2 log n) using our AVL tree collision resolution
mechanism.

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 14 / 21



4-4-4-4 Sum
Your next challenge: What about for a group of 4 integers - can you do this in O(n2)?

We can reduce this problem to asking: ‘are there any mutually disjoint’ pairs that sum
up to the target t.

Mutually disjoint meaning the two pairs don’t share any common elements.

We insert the sum of all n(n−1)
2 pairs into a hash table along with the indices of each

element in the pair. Now for each pair (a, b), we search for its complement x− a− b in
our hashtable.

If found, we ensure that all four elements across the two pairs are unique by comparing
their array_indices.

Clearly O(n2) in the average case since there are O(n2) pairs and insertion and
searching both take constant time.
Even in worst case, we will have O(n2 log n) using our AVL tree collision resolution
mechanism.

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 14 / 21



4-4-4-4 Sum
Your next challenge: What about for a group of 4 integers - can you do this in O(n2)?

We can reduce this problem to asking: ‘are there any mutually disjoint’ pairs that sum
up to the target t.

Mutually disjoint meaning the two pairs don’t share any common elements.

We insert the sum of all n(n−1)
2 pairs into a hash table along with the indices of each

element in the pair. Now for each pair (a, b), we search for its complement x− a− b in
our hashtable.

If found, we ensure that all four elements across the two pairs are unique by comparing
their array_indices.

Clearly O(n2) in the average case since there are O(n2) pairs and insertion and
searching both take constant time.
Even in worst case, we will have O(n2 log n) using our AVL tree collision resolution
mechanism.

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 14 / 21



Sidetrack: Prefix Sum
There is a simple yet powerful technique that allows for the fast calculation of sums of
elements in a given slice (contiguous segments of an array).

Its main idea uses prefix sums which are defined as the consecutive totals of the first
0, 1, 2, . . . , n elements of an array.

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 15 / 21



Sidetrack: Prefix Sum
There is a simple yet powerful technique that allows for the fast calculation of sums of
elements in a given slice (contiguous segments of an array).

Its main idea uses prefix sums which are defined as the consecutive totals of the first
0, 1, 2, . . . , n elements of an array.

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 15 / 21



Sidetrack: Prefix Sum
There is a simple yet powerful technique that allows for the fast calculation of sums of
elements in a given slice (contiguous segments of an array).

Its main idea uses prefix sums which are defined as the consecutive totals of the first
0, 1, 2, . . . , n elements of an array.

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 15 / 21



Sidetrack: Prefix Sum
Why is this useful?

We can now find the sum between two elements in a given array in O(1)!.

Calculate Prefix Sum Array in O(N)

1: for i = 1 to N do
pref [i] = pref [i− 1] + arr[i]

2: end for

Now to find the sum between element L and element R we can simply do

pref [R]− pref [L− 1]

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 16 / 21



Sidetrack: Prefix Sum
Why is this useful?

We can now find the sum between two elements in a given array in O(1)!.

Calculate Prefix Sum Array in O(N)

1: for i = 1 to N do
pref [i] = pref [i− 1] + arr[i]

2: end for

Now to find the sum between element L and element R we can simply do

pref [R]− pref [L− 1]

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 16 / 21



Sidetrack: Prefix Sum
Why is this useful?

We can now find the sum between two elements in a given array in O(1)!.

Calculate Prefix Sum Array in O(N)

1: for i = 1 to N do
pref [i] = pref [i− 1] + arr[i]

2: end for

Now to find the sum between element L and element R we can simply do

pref [R]− pref [L− 1]

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 16 / 21



Sidetrack: Prefix Sum
Why is this useful?

We can now find the sum between two elements in a given array in O(1)!.

Calculate Prefix Sum Array in O(N)

1: for i = 1 to N do
pref [i] = pref [i− 1] + arr[i]

2: end for

Now to find the sum between element L and element R we can simply do

pref [R]− pref [L− 1]

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 16 / 21



Candy

You are first given two integers N and K, you are then given an N element array
candy, where candy[i] represents the number of candies you gain/lose by walking
over index i (either someone robs you or someone donates to you). Since you can’t
teleport, you can only walk in a contiguous region and since you are also lazy, you
want to travel the shortest distance. Where should you start and end such that you
will gain exactly K candies?

Sample Input:
5 3
2 -1 5 2 -4

Sample Output:
3 5

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 17 / 21



Candy
We want to find a contiguous region where the sum is exactly K. More formally,∑r

i=l candy[i] = K.
How might we simplify this expression?

Prefix Sum!
This problem can now be reformulated as prefCandy[r]− prefCandy[l − 1] = K.
Now this problem looks much more solvable.
Suppose now we are at index i, we want to find an index j such that j < i and that
prefCandy[j] = prefCandy[i]−K, then we would have found the two endpoints of
the region.
How do we find an index j that satisfies our condition? We use a map!
Our HashMap maps a prefix sum value to the index where this prefix value appears.
If m is our HashMap, then m[prefCandy[i]] = i.
Then at an index i, we simply have to query for m[prefCandy[i]−K] to see if a
corresponding matching index exists, if it exists, we have found a valid contiguous
region that sums to K.

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 18 / 21



Candy
We want to find a contiguous region where the sum is exactly K. More formally,∑r

i=l candy[i] = K.
How might we simplify this expression?
Prefix Sum!

This problem can now be reformulated as prefCandy[r]− prefCandy[l − 1] = K.
Now this problem looks much more solvable.
Suppose now we are at index i, we want to find an index j such that j < i and that
prefCandy[j] = prefCandy[i]−K, then we would have found the two endpoints of
the region.
How do we find an index j that satisfies our condition? We use a map!
Our HashMap maps a prefix sum value to the index where this prefix value appears.
If m is our HashMap, then m[prefCandy[i]] = i.
Then at an index i, we simply have to query for m[prefCandy[i]−K] to see if a
corresponding matching index exists, if it exists, we have found a valid contiguous
region that sums to K.

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 18 / 21



Candy
We want to find a contiguous region where the sum is exactly K. More formally,∑r

i=l candy[i] = K.
How might we simplify this expression?
Prefix Sum!
This problem can now be reformulated as prefCandy[r]− prefCandy[l − 1] = K.
Now this problem looks much more solvable.

Suppose now we are at index i, we want to find an index j such that j < i and that
prefCandy[j] = prefCandy[i]−K, then we would have found the two endpoints of
the region.
How do we find an index j that satisfies our condition? We use a map!
Our HashMap maps a prefix sum value to the index where this prefix value appears.
If m is our HashMap, then m[prefCandy[i]] = i.
Then at an index i, we simply have to query for m[prefCandy[i]−K] to see if a
corresponding matching index exists, if it exists, we have found a valid contiguous
region that sums to K.

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 18 / 21



Candy
We want to find a contiguous region where the sum is exactly K. More formally,∑r

i=l candy[i] = K.
How might we simplify this expression?
Prefix Sum!
This problem can now be reformulated as prefCandy[r]− prefCandy[l − 1] = K.
Now this problem looks much more solvable.
Suppose now we are at index i, we want to find an index j such that j < i and that
prefCandy[j] = prefCandy[i]−K, then we would have found the two endpoints of
the region.

How do we find an index j that satisfies our condition? We use a map!
Our HashMap maps a prefix sum value to the index where this prefix value appears.
If m is our HashMap, then m[prefCandy[i]] = i.
Then at an index i, we simply have to query for m[prefCandy[i]−K] to see if a
corresponding matching index exists, if it exists, we have found a valid contiguous
region that sums to K.

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 18 / 21



Candy
We want to find a contiguous region where the sum is exactly K. More formally,∑r

i=l candy[i] = K.
How might we simplify this expression?
Prefix Sum!
This problem can now be reformulated as prefCandy[r]− prefCandy[l − 1] = K.
Now this problem looks much more solvable.
Suppose now we are at index i, we want to find an index j such that j < i and that
prefCandy[j] = prefCandy[i]−K, then we would have found the two endpoints of
the region.
How do we find an index j that satisfies our condition? We use a map!

Our HashMap maps a prefix sum value to the index where this prefix value appears.
If m is our HashMap, then m[prefCandy[i]] = i.
Then at an index i, we simply have to query for m[prefCandy[i]−K] to see if a
corresponding matching index exists, if it exists, we have found a valid contiguous
region that sums to K.

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 18 / 21



Candy
We want to find a contiguous region where the sum is exactly K. More formally,∑r

i=l candy[i] = K.
How might we simplify this expression?
Prefix Sum!
This problem can now be reformulated as prefCandy[r]− prefCandy[l − 1] = K.
Now this problem looks much more solvable.
Suppose now we are at index i, we want to find an index j such that j < i and that
prefCandy[j] = prefCandy[i]−K, then we would have found the two endpoints of
the region.
How do we find an index j that satisfies our condition? We use a map!
Our HashMap maps a prefix sum value to the index where this prefix value appears.
If m is our HashMap, then m[prefCandy[i]] = i.
Then at an index i, we simply have to query for m[prefCandy[i]−K] to see if a
corresponding matching index exists, if it exists, we have found a valid contiguous
region that sums to K.

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 18 / 21



Candy

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 19 / 21



Attendance and Feedback :D

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 20 / 21



Further events
Please join us for:

IMC Coding Competition Wednesday Next Week! @ Mathews Theatre B
Our Next Programming Workshop in W7 (stay updated on our socials!)

Any Final Questions?
Thank you for coming!

Kyle and Freddie Hashing In The Real World Friday Week 4 T1 2024 21 / 21


	Gentle Intro to Hashing
	Why's Hashing Useful?
	HashMap in C++

	Uses of Hashing in Competitive Programming

